翻訳と辞書
Words near each other
・ Hilbert's tenth problem
・ Hilbert's theorem
・ Hilbert's theorem (differential geometry)
・ Hilbert's Theorem 90
・ Hilbert's third problem
・ Hilbert's thirteenth problem
・ Hilbert's twelfth problem
・ Hilbert's twentieth problem
・ Hilbert's twenty-first problem
・ Hilbert's twenty-fourth problem
・ Hilbert's twenty-second problem
・ Hilbert's twenty-third problem
・ Hilbert, West Virginia
・ Hilbert, Wisconsin
・ Hilbert–Bernays paradox
Hilbert–Bernays provability conditions
・ Hilbert–Burch theorem
・ Hilbert–Huang transform
・ Hilbert–Kunz function
・ Hilbert–Mumford criterion
・ Hilbert–Poincaré series
・ Hilbert–Pólya conjecture
・ Hilbert–Samuel function
・ Hilbert–Schmidt
・ Hilbert–Schmidt integral operator
・ Hilbert–Schmidt operator
・ Hilbert–Schmidt theorem
・ Hilbert–Smith conjecture
・ Hilbert–Speiser theorem
・ Hilbesheim


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert–Bernays provability conditions : ウィキペディア英語版
Hilbert–Bernays provability conditions
In mathematical logic, the Hilbert–Bernays provability conditions, named after David Hilbert and Paul Bernays, are a set of requirements for formalized provability predicates in formal theories of arithmetic (Smith 2007:224).
These conditions are used in many proofs of Kurt Gödel's second incompleteness theorem. They are also closely related to axioms of provability logic.
== The conditions ==
Let ''T'' be a formal theory of arithmetic with a formalized provability predicate Prov(''n''), which is expressed as a formula of ''T'' with one free number variable. For each formula φ in the theory, let #(φ) be the Gödel number of φ. The Hilbert–Bernays provability conditions are:
# If ''T'' proves a sentence φ then ''T'' proves Prov(#(φ)).
# For every sentence φ, ''T'' proves Prov(#(φ)) → Prov(#(Prov(#(φ))))
# ''T'' proves that Prov(#(φ → ψ)) and Prov(#(φ)) imply Prov (#(ψ))

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert–Bernays provability conditions」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.